
m6anet

Jul 23, 2023

Contents

1 Contents 3
1.1 Installation . 3

1.1.1 PyPI installation (recommended) . 3
1.1.2 Conda installation . 3
1.1.3 Installation from our GitHub repository . 3

1.2 Quick Start . 3
1.2.1 Dataprep . 3
1.2.2 Inference . 4

1.3 Command line arguments . 5
1.3.1 m6anet dataprep . 5
1.3.2 m6anet inference . 6
1.3.3 m6anet train . 7

1.4 Training m6Anet . 7
1.5 Getting Help . 9
1.6 Release Notes . 9

1.6.1 Release Note 2.1.0 . 9
1.6.2 m6anet model trained with RNA004 chemistry (development version) 9
1.6.3 Training and evaluating the RNA004 m6anet . 10
1.6.4 Acknowledgments . 11
1.6.5 Release Note 2.0.0 . 11
1.6.6 API Changes . 11
1.6.7 Faster and Better Inference Implementation . 12
1.6.8 Rounding of Dataprep Output . 12
1.6.9 Arabidopsis Trained m6Anet . 12

1.7 Citing m6Anet . 13

2 Citing m6Anet 15

3 Contacts 17

i

ii

m6anet

m6anet is a python tool that leverages Multiple Instance Learning framework to detect m6a modifications from
Nanopore Direct RNA Sequencing data.

m6anet requires Python version 3.7 or higher. To install the latest release with PyPI (recommended) run:

pip install m6anet

See our Installation page for details.

To detect m6A modifications from your direct RNA sequencing sample, you can follow the instructions in our Quick-
start page. m6Anet is trained on dataset sequenced using the SQK-RNA002 kit and has been validated on dataset from
SQK-RNA001 kit. Newer pore version might alter the raw squiggle and affect segmentation and classification results
and in such cases m6Anet might need to be retrained.

Contents 1

m6anet

2 Contents

CHAPTER 1

Contents

1.1 Installation

m6Anet requires Python version 3.7 or higher to run. Installation typically takes less than 5 minutes but might vary
depending on your connection speed

1.1.1 PyPI installation (recommended)

pip install m6anet

1.1.2 Conda installation

conda install -c bioconda m6anet

1.1.3 Installation from our GitHub repository

git clone https://github.com/GoekeLab/m6anet.git
cd m6anet
pip install .

1.2 Quick Start

1.2.1 Dataprep

m6Anet dataprep requires eventalign.txt from nanopolish eventalign:

3

https://www.python.org

m6anet

nanopolish eventalign --reads reads.fastq --bam reads.sorted.bam --genome transcript.
→˓fa --scale-events --signal-index --summary /path/to/summary.txt --threads 50 > /
→˓path/to/eventalign.txt

This function segments raw fast5 signals to each position within the transcriptome, allowing m6Anet to predict mod-
ification based on the segmented signals. In order to run eventalign, users will need: * reads.fastq: fastq file
generated from basecalling the raw .fast5 files * reads.sorted.bam: sorted bam file obtained from aligning
reads.fastq to the reference transcriptome file * transcript.fa: reference transcriptome file

We have also provided a demo eventalign.txt dataset in the repository under
/path/to/m6anet/m6anet/tests/data/eventalign.txt. Please see Nanopolish for more information.

After running nanopolish eventalign, we need to preprocess the segmented raw signal file using ‘m6anet dataprep’:

m6anet dataprep --eventalign /path/to/m6anet/m6anet/tests/data/eventalign.txt \
--out_dir /path/to/output --n_processes 4

The output files are stored in /path/to/output:

• data.json: json file containing the features to feed into m6Anet model for prediction

• data.log: Log file containing all the transcripts that have been successfully preprocessed

• data.info: File containing indexing information of data.json for faster file access and the number of reads
for each DRACH positions in eventalign.txt

• eventalign.index: Index file created during dataprep to allow faster access of Nanopolish eventalign.txt
during dataprep

1.2.2 Inference

Once m6anet dataprep finishes running, we can run m6anet inference on the dataprep output

m6anet inference --input_dir path/to/output --out_dir path/to/output --n_processes 4
→˓--num_iterations 1000

m6anet inference will run default human model trained on the HCT116 cell line. In order to run Arabidopsis-based
model or the HEK293T-RNA004-based model, please supply the --pretrained_model argument

For the Arabidopsis-based model
m6anet inference --input_dir path/to/output --out_dir path/to/output --pretrained_
→˓model arabidopsis_RNA002 --n_processes 4 --num_iterations 1000

For the HEK293T-RNA004-based model
m6anet inference --input_dir path/to/output --out_dir path/to/output --pretrained_
→˓model HEK293T_RNA004 --n_processes 4 --num_iterations 1000

m6Anet will sample 20 reads from each candidate site and average the probability of modification across several round
of sampling according to the –num_iterations parameter. The output file data.indiv_proba.csv contains the probability
of modification for each read

• transcript_id: The transcript id of the predicted position

• transcript_position: The transcript position of the predicted position

• read_index: The read identifier from nanopolish that corresponds to the actual read_id from nanopolish
summary.txt

• probability_modified: The probability that a given read is modified

4 Chapter 1. Contents

https://github.com/jts/nanopolish

m6anet

The output file data.site_proba.csv contains the probability of modification at each individual position for each tran-
script. The output file will have 6 columns

• transcript_id: The transcript id of the predicted position

• transcript_position: The transcript position of the predicted position

• n_reads: The number of reads for that particular position

• probability_modified: The probability that a given site is modified

• kmer: The 5-mer motif of a given site

• mod_ratio: The estimated percentage of reads in a given site that is modified

The mod_ratio column is calculated by thresholding the probability_modified from data.indiv_proba.csv
based on the --read_proba_threshold parameter during m6anet inference call, with a default value
of 0.033379376 for the default human model HCT116_RNA002 and 0.0032978046219796 for arabidopsis_RNA002
model. We also recommend a threshold of 0.9 to select m6A sites from the probability_modified column in
data.site_proba.csv. The total run time should not exceed 10 minutes on a normal laptop.

m6Anet also supports pooling over multiple replicates. To do this, simply input multiple folders containing m6anet-
dataprep outputs:

m6anet inference --input_dir data_folder_1 data_folder_2 ... --out_dir output_folder -
→˓-n_processes 4 --num_iterations 1000

1.3 Command line arguments

We provide 2 main scripts to run m6A prediction as the following.

1.3.1 m6anet dataprep

• Input

Output files from nanopolish eventalign. Please refer to Quickstart page for more details on running nanop-
olish.

Argument name Re-
quired

Default
value

Description

–eventalign=FILE Yes NA Eventalign filepath, the output from nanopolish.
–out_dir=DIR Yes NA Output directory.
–n_processes=NUM No 1 Number of processes to run.
–chunk_size=NUM No 1000000 chunksize argument for pandas read csv function on the eventalign

input
–read-
count_max=NUM

No 1000 Maximum read counts per gene.

–read-
count_min=NUM

No 1 Minimum read counts per gene.

–skip_index No False To skip indexing the eventalign nanopolish output, can only be used
if the index has been created before

–n_neighbors=NUM No 1 The number of flanking positions to process
–min_segment_count=NUMNo 1 Minimum read counts over each candidate m6A segment
–compress No False Round down output features to 3 decimal places

1.3. Command line arguments 5

m6anet

• Output

File
name

File
type

Description

evental-
ign.index

csv File index indicating the position in the eventalign.txt file (the output of nanopolish eventalign)
where the segmentation information of each read index is stored, allowing a random access.

data.json json Intensity level mean for each position.
data.info csv File containing readcounts per transcript and index indicating the position in the data.json file

where the intensity level means across positions of each gene is stored, allowing a random
access.

1.3.2 m6anet inference

• Input

Output files from m6anet dataprep.

Argument name Re-
quired

Default
value

Description

–input_dir=DIR Yes NA Input directory that contains data.json, data.index, and
data.readcount from m6anet-dataprep

–out_dir=DIR Yes NA Output directory for the inference results from m6anet
–pre-
trained_model=STR

No Hct116_RNA002Name of the pre-trained model: Hct116_RNA002, arabidopsis, and
HEK293T_RNA004

–model_config=FILENo prod_pooling.tomlModel architecture specifications. Please see examples in
m6anet/model/configs/model_configs/prod_pooling.toml

–model_state_dict=FILENo prod_pooling_pr_auc.ptModel weights to be used for inference. Please see examples in
m6anet/model/model_states/

–batch_size=NUM No 64 Number of sites to be loaded each time for inference
–n_processes=NUMNo 1 Number of processes to run.
–num_iterations=NUMNo 5 Number of times m6anet iterates through each potential m6a sites.
–read_proba_threshold=NUMNo 0.033379376 Threshold for each individual read to be considered modified during

stoichiometry calculation

• Output

File name File type Description
data.site_proba.csv csv Result table for each candidate m6A site
data.indiv_proba.csv csv Result table for each candidate m6A read

6 Chapter 1. Contents

m6anet

1.3.3 m6anet train

Argument
name

Re-
quired

Default
value

Description

–model_config=FILEYes NA Model architecture specifications. Please see examples in
m6anet/model/configs/model_configs/prod_pooling.toml

–train_config=FILEYes NA Config file for training the model. Please see examples in
m6anet/model/configs/training_configs/oversampled.toml

–save_dir=DIR Yes NA Save directory to save the training results
–device=STR No cpu Device to use for training the model. Set to cuda:cuda_id if using GPU
–lr=NUM No 4e-4 Learning rate for the ADAM optimizer
–seed=NUM No 25 Random seed for model training
–epochs=NUM No 50 Number of epochs to train the model.
–num_workers=NUMNo 1 Number of processes to run.
–save_per_epoch=NUMNo 10 Number of recurring epoch to save the model
–weight_decay=NUMNo 0 Weight decay parameteter for the ADAM optimizer
–num_iterations=NUMNo 5 Number of times m6anet iterates through each potential m6a sites.

1.4 Training m6Anet

m6Anet expects a training config file and a model config file, both on TOML format. We have provided examples of
the model config file and the training config file in:

• m6anet/m6anet/model/configs/model_configs/m6anet.toml

• m6anet/m6anet/model/configs/training_configs/m6anet_train_config.toml

Below is the content of m6anet_train_config.toml

[loss_function]
loss_function_type = "binary_cross_entropy_loss"

[dataset]
root_dir = "/path/to/m6anet-dataprep/output"
min_reads = 20
norm_path = "/path/to/m6anet/m6anet/model/norm_factors/norm_dict.joblib"
num_neighboring_features = 1

[dataloader]
[dataloader.train]
batch_size = 256
sampler = "ImbalanceOverSampler"

[dataloader.val]
batch_size = 256
shuffle = false

[dataloader.test]
batch_size = 256
shuffle = false

User can modify some basic training information such as the batch_size, the number of neighboring features, as
well as the minimum number of reads per site to train m6Anet. We have also calculated the normalization factors
required under norm_path variable. In principle, one can even change the loss_function_type by choosing one from

1.4. Training m6Anet 7

m6anet

m6anet/m6anet/utils/loss_functions.py or defining a new one. Sampler can be set to ImbalanceOverSampler (in which
the model will perform oversampling to tackle the data imbalance with m6Anet modification) or any other sampler
from m6anet/m6anet/utils/data_utils.py

The training script will look for data.info.labelled file and data.json file under the root_dir directory. While data.info
can be obtained by running m6anet dataprep on nanopolish eventalign.txt file, data.info.labelled must be supplied by
the user by adding extra columns to the data.info file produced by m6anet dataprep. Additionally, data.info.labelled
must be of the following format:

transcript_id transcript_position n_reads start end modification_status set_type
ENST00000361055 549 11 0 940 0 Train
ENST00000361055 554 12 940 1969 0 Train
ENST00000475035 133 3 1969 2294 0 Train
ENST00000222329 309 11 2299 3284 0 Val
ENST00000222329 2496 15 3284 4593 0 Val
ENST00000222329 2631 23 4593 6548 0 Val
ENST00000523944 72 1 6548 6665 0 Test
ENST00000523944 2196 14 6665 7853 0 Test

Here modification status tells the model which positions are modified and which positions are not modified. The
column set_type informs the training script which part of the data we should train on and which part of the data should
be used for validation and testing purpose. Lastly, n_reads corresponds to the number of reads that comes from the
corresponding transcript positions and any sites with n_reads less than the min_reads specified in he training config
file will not be used for training validation, or testing. We have also provided an example of data.readcount.labelled in
m6anet/demo/ folder.

Below is the content of m6anet.toml:

model = "prod_sigmoid_pooling"

[[block]]
block_type = "DeaggregateNanopolish"
num_neighboring_features = 1

[[block]]
block_type = "KmerMultipleEmbedding"
input_channel = 66
output_channel = 2
num_neighboring_features = 1

[[block]]
block_type = "ConcatenateFeatures"

[[block]]
block_type = "Linear"
input_channel = 15
output_channel = 150
activation = "relu"
batch_norm = true

[[block]]
block_type = "Linear"
input_channel = 150
output_channel = 32
activation = "relu"
batch_norm = false

[[block]]

(continues on next page)

8 Chapter 1. Contents

m6anet

(continued from previous page)

block_type = "SigmoidProdPooling"
input_channel = 32
n_reads_per_site = 20

The training script will build the model block by block. For additional information on the block type, please check the
source code under m6anet/m6anet/model/model_blocks

In order to train m6Anet, please change the root_dir variable inside prod_pooling.toml to m6anet/demo/. Afterwards,
run m6anet-dataprep:

m6anet dataprep --eventalign m6anet/demo/eventalign.txt \
--out_dir m6anet/demo/ --n_processes 4

This will produce data.index file and data.json file that will be used for the script to access the preprocessed data Next,
to train m6Anet using the demo data, run:

m6anet train --model_config m6anet/model/configs/model_configs/m6anet.toml --train_
→˓config ../m6anet/model/configs/training_configs/m6anet_train_config.toml --save_dir
→˓/path/to/save_dir --device cpu --lr 0.0001 --seed 25 --epochs 30 --num_workers 4 --
→˓save_per_epoch 1 --num_iterations 5

The model will be trained on cpu for 30 epochs and we will save the model states every 1 epoch. One can replace the
device argument with cuda to train with GPU. For complete description of the command line arguments, please see
Command line arguments page

1.5 Getting Help

We appreciate your feedback and questions! You can report any error or suggestion related to m6Anet as an issue on
github. If you have questions related to the manuscript, data, or any general comment or suggestion please use the
Discussions.

Thank you!

1.6 Release Notes

1.6.1 Release Note 2.1.0

1.6.2 m6anet model trained with RNA004 chemistry (development version)

The default m6Anet model was trained with the currently available RNA002 direct RNA-Seq kit. Oxford Nanopore is
currently providing access to the development version of the next version, RNA004. To make m6A detection possible
with RNA004, we now provide an m6Anet model trained on direct RNA Seq data from the HEK293T cell line using
the development version of RNA004. In order to call m6A on data from the RNA004 kit, the following commands
can be used:

1) Pre-processing/segmentation/dataprep Please use f5c with the RNA004 kmer model, as described here: https:
//github.com/hasindu2008/f5c/releases/tag/v1.3

The kmer model can be downloaded here: https://raw.githubusercontent.com/hasindu2008/f5c/v1.3/test/
rna004-models/rna004.nucleotide.5mer.model

Then execute eventalign with –kmer-model pointing to the path to the downloaded k-mer model as follows

1.5. Getting Help 9

https://github.com/GoekeLab/m6anet/issues
https://github.com/GoekeLab/m6anet/issues
https://github.com/GoekeLab/m6anet/discussions
https://github.com/hasindu2008/f5c/releases/tag/v1.3
https://github.com/hasindu2008/f5c/releases/tag/v1.3
https://raw.githubusercontent.com/hasindu2008/f5c/v1.3/test/rna004-models/rna004.nucleotide.5mer.model
https://raw.githubusercontent.com/hasindu2008/f5c/v1.3/test/rna004-models/rna004.nucleotide.5mer.model

m6anet

f5c eventalign --rna -b reads.bam -r reads.fastq -g transciptome.fa -o eventalign.tsv
→˓\
--kmer-model /path/to/rna004.nucleotide.5mer.model --slow5 reads.blow5 --signal-index
→˓\
--scale-events

The output can then be used with m6Anet dataprep (see https://m6anet.readthedocs.io/en/latest/quickstart.html)

2) Inference In order to identify m6A from RNA004 data, the RNA004 model has to be specified

m6anet inference --input_dir [INPUT_DIR] --out_dir [OUT_DIR] --pretrained_model
→˓HEK293T_RNA004

The RNA004 model is trained on the development version and only underwent limited evaluation on site-level pre-
diction compared to the RNA002 model. The individual read probability accuracy for RNA004 has not been tested.
Please report any feedback to us (https://github.com/GoekeLab/m6anet/discussions)

1.6.3 Training and evaluating the RNA004 m6anet

We trained m6anet using an RNA004 direct RNA-Seq run of the HEK293T cell line, with m6A positions defined by
m6ACE-Seq. We then evaluated the RNA004-based m6anet performance on RNA004 data from the Hek293T and the
Hct116 cell line. Here, we used the intersection of all sites identified both in the RNA002 and the RNA004 data to
compare the RN004 model (tested on RNA004 data) and the RNA002 model (tested on RNA002 data), using m6ACE-
Seq as ground truth (Figure 1-2). The results suggest a comparable performance between the RNA002-trained and the
RNA004-trained m6anet.

Please note that the RNA004 will generate higher read numbers, which leads to a higher number of sites being tested.

HEK293T HCT116

Figure 1: ROC curve comparing the m6Anet model trained on RNA002 and evaluated on RNA002 data with the
model trained on RNA004 and evaluated on RNA004. Only sites that were detected in both data sets are used in this
comparison. Here, a MAPQ filter of 20 was applied.

10 Chapter 1. Contents

https://m6anet.readthedocs.io/en/latest/quickstart.html
https://github.com/GoekeLab/m6anet/discussions

m6anet

HEK293T HCT116

Figure 2: ROC curve comparing the m6Anet model trained on RNA002 and evaluated on RNA002 data with the
model trained on RNA004 and evaluated on RNA004. Only sites that were detected in both data sets are used in this
comparison. Here, a MAPQ filter of 0 was applied to the RNA004 data, leading to a higher number of sites which are
detected.

The latest RNA004-trained m6anet model is available on https://github.com/goekeLab/m6anet.

1.6.4 Acknowledgments

We thank Hasindu Gamaarachchi, Hiruna Samarakoon, James Ferguson, and Ira Deveson from the Garvan Institute of
Medical Research in Sydney, Australia for enabling the eventalign of the RNA004 data with f5c. We thank Bing Shao
Chia, Wei Leong Chew, Arnaud Perrin, Jay Shin, and Hwee Meng Low from the Genome Institute of Singapore for
providing the RNA and generating the direct RNA-Seq data, and we thank Paola Florez De Sessions, Lin Yang, Adrien
Leger, Lakmal Jayasinghe, Libby Snell, Etienne Raimondeau, and Oxford Nanopore Technologies for providing early
access to RNA004, generating the Hek293T data that was used to train the m6Anet model, and for feedback on the
results. The model was trained and implemented by Yuk Kei Wan.

1.6.5 Release Note 2.0.0

1.6.6 API Changes

The m6Anet functions for preprocessing, inference, and training have now been simplified. We now provide a
single entry point for all m6anet functionalities through the m6anet module. This means that all the old func-
tionalities of m6Anet are now available through the m6anet module call, such as m6anet dataprep, m6anet
inference and m6anet train functions. The command m6anet-dataprep, m6anet-run_inference
and m6anet-train are deprecated and will be removed in the next version. Please check our updated Quickstart
page and Training page for more details on running m6Anet.

We have also made some changes to the m6anet dataprep function. Previously m6anet-dataprep produces data.index
and data.readcount files to run inference, and we realized that this can be simplified by combining the two files
together. The current m6anet dataprep (and also the deprecated m6anet-dataprep) now produces a single data.info
file that combines the information from both data.index and data.readcount. Furthermore, m6anet inference (also
the deprecated m6anet-run_inference) now requires data.info file to be present in the input directory. We have also
provided a function for users to convert older dataprep output files to the newest format using

1.6. Release Notes 11

https://github.com/goekeLab/m6anet

m6anet

m6anet convert --input_dir /path/to/old/dataprep/output --out_dir /path/to/old/
→˓dataprep/output

This function will create data.info file by combining the old data.index and data.readcount files. The users still need
to make sure that data.info file is located in the same folder as data.json file

1.6.7 Faster and Better Inference Implementation

In order to minimize the effect of sequencing depth in m6Anet prediction, a fixed number of reads are sampled from
each site during m6Anet training. This process is repeated during inference where the sampling will be repeated several
times for each candidate site to stabilize the modification probability. The number of sampling rounds is controlled
through the option –num_iterations and the default was set to 5 in the previous version of m6Anet to minimize running
time.

A low number of sampling iterations results in unstable probability value for individual sites and while the overall
performance of m6Anet on large datasets remains unaffected, users looking to identify and study modifications on
individual sites will benefit from a more consistent modification score. In m6Anet 2.0.0, we have improved the
inference process so that it can accommodate a higher number of sampling iterations while still maintaining a relatively
fast inference time. Here we include the comparison between the older m6Anet version against the current release in
terms of their peak memory usage and running time over a different number of sampling rounds on our HEK293T
dataset with 95030 sites and 8019824 reads. The calculation is done on AMD EPYC 7R32 with –num_processes set
to 25.

Version Number Peak Memory Usage(MB) Running Time(s) Number of Iterations
m6Anet v-1.1.1 480.5 8876.77 50
m6Anet v-1.1.1 677.9 18009.92 100
m6Anet v-2.0.0 553.7 392.91 5
m6Anet v-2.0.0 571.3 229.92 50
m6Anet v-2.0.0 576.4 409.71 100
m6Anet v-2.0.0 578.5 408.17 1000

As we can see, the latest version of m6Anet has relatively constant peak memory usage with minimal difference in
running time between 100 and 1000 iteration runs. To achieve this, m6Anet saves each individual read probability
file in data.indiv_proba.csv before sampling the required amount of reads for each site in parallel. The site level
probability is then saved in data.site_proba.csv.

1.6.8 Rounding of Dataprep Output

Users can now add --compress flag to m6anet dataprep to round the dataprep output features to 3 decimal
places. In our experience, this reduces the file size for data.json significantly without compromising model perfor-
mance.

1.6.9 Arabidopsis Trained m6Anet

We have also included m6Anet model trained on the Arabidopsis VIRc dataset from our paper as an option for users
who are looking to study m6A modification on plant genomes or to aggregate predictions from different m6Anet
models on their datasets. Here we present single molecular probability results on synthetic RNA from the curlcake
dataset

12 Chapter 1. Contents

https://elifesciences.org/articles/78808
https://www.nature.com/articles/s41592-022-01666-1
https://www.nature.com/articles/s41467-019-11713-9
https://www.nature.com/articles/s41467-019-11713-9

m6anet

The single-molecule m6A predictions of the Arabidopsis model seem to be comparable with the human model with
ROC AUC of 0.89 and PR AUC of 0.90 on the synthetic. We also validate the ability to predict per-molecule modi-
fications of the Arabidopsis model on the human HEK293T METTL3-KO and wild-type samples that were mixed to
achieve an expected relative m6A stoichiometry of 0%, 25%, 50%, 75%, and 100% from xPore on the sites predicted
to be modified in wild-type samples (probability ≥ 0.7)) As we can see, from the 1041 shared sites that we inspect
across the HEK293T mixtures, the median prediction of the model follows the expected modification ratio.

In order to run the Arabidopsis model, please add the following command when running m6anet inference

• --read_proba_threshold : 0.0032978046219796

• --model_state_dict : m6anet/m6anet/model/model_states/arabidopsis_virc.pt

• --norm_path : m6anet/m6anet/model/norm_factors/norm_factors_virc.joblib

1.7 Citing m6Anet

If you use m6Anet in your research, please cite Christopher Hendra, et al.,Detection of m6A from direct RNA se-
quencing using a Multiple Instance Learning framework. *Nat Methods* (2022) for more information.

1.7. Citing m6Anet 13

https://www.nature.com/articles/s41587-021-00949-w
https://doi.org/10.1038/s41592-022-01666-1
https://doi.org/10.1038/s41592-022-01666-1

m6anet

14 Chapter 1. Contents

CHAPTER 2

Citing m6Anet

If you use m6Anet in your research, please cite Christopher Hendra, et al.,Detection of m6A from direct RNA se-
quencing using a Multiple Instance Learning framework. *Nat Methods* (2022)

15

https://doi.org/10.1038/s41592-022-01666-1
https://doi.org/10.1038/s41592-022-01666-1

m6anet

16 Chapter 2. Citing m6Anet

CHAPTER 3

Contacts

m6anet is developed and maintained by Christopher Hendra and Jonathan Göke from the Genome Institute of Singa-
pore, A*STAR. If you want to contribute, please leave an issue in our repo

Thank you!

17

https://github.com/chrishendra93
https://github.com/jonathangoeke
https://github.com/GoekeLab/m6anet/issues

	Contents
	Installation
	PyPI installation (recommended)
	Conda installation
	Installation from our GitHub repository

	Quick Start
	Dataprep
	Inference

	Command line arguments
	m6anet dataprep
	m6anet inference
	m6anet train

	Training m6Anet
	Getting Help
	Release Notes
	Release Note 2.1.0
	m6anet model trained with RNA004 chemistry (development version)
	Training and evaluating the RNA004 m6anet
	Acknowledgments
	Release Note 2.0.0
	API Changes
	Faster and Better Inference Implementation
	Rounding of Dataprep Output
	Arabidopsis Trained m6Anet

	Citing m6Anet

	Citing m6Anet
	Contacts

